Upper Limb Prosthetic Management
Hybrid Design Approaches

by John N. Billock, C.P.O.

With the advent of electric powered components and control systems in the past 20 to 25 years, there has been considerable transition in the prosthetic management and rehabilitation of individuals with traumatic and congenital upper limb deficiencies. Furthermore, it has only been within the past 5 years that electrically powered upper limb prostheses have gained clinical acceptance in the U.S. There now exists a complex variety of approaches from which the prosthetics practitioner must choose, in order to provide appropriate prosthetic restoration services. Along with the traditional variety of bowden cable control systems for actuating mechanical components, there now exists a number of myoelectric and switch control systems for use with electrically powered hands, wrists, and elbows. The introduction of these new components and control techniques has greatly increased the complexity of designing an appropriate upper limb prosthesis.

As a result, some researchers and manufacturers have worked to develop total systems for the various levels of upper limb deficiencies. These systems generally are designed around a modular concept, where the batteries, electronics, electrodes, etc., are packaged as individual modules for easier handling and assembly. They also utilize a common electrical connection system, which may or may not be compatible with other components and control systems. The modular systems approach reduces the overall complexity in designing prostheses. However, it does not always provide the patient with the most appropriate prosthesis when his individual physiological and psychological needs are considered. It is in such a situation that thought must be given to the possibility of developing a hybrid prosthesis. A hybrid designed prosthesis utilizing components and control methods from various "systems" can, in many cases, enable the prosthetist to design and develop a prosthesis which is more functional and acceptable.

The hybrid design approach becomes even more important when managing individuals with upper limb deficiencies above the elbow and higher. Many cases require a combination of electrically powered components that are switch and/or myoelectrically controlled and mechanical body powered bowden cable controlled components. A classical example of this situation occurs in the design of an above elbow prosthesis for an individual with a distal humeral deficiency. A limb deficiency at this level generally does not require the use of an electrically powered elbow since the individual should have sufficient range of motion at the shoulder joint and adequate muscle strength to control a mechanical elbow. A myoelectrically controlled hand introduced into the design of the prosthesis, for this level, can significantly improve it's functional capabilities and aesthetics. This particular hybrid design allows the individual to simultaneously control the elbow and hand rather than sequentially. It has been the author's experience that individuals with this particular design infrequently utilize the mechanical elbow lock to maintain the hand and forearm in a fixed locked position for functional activities. Rather, the elbow is allowed to flex freely and is held momentarily stable with cable tension. The overall control of the prosthesis is more natural since use of the elbow lock is not necessary the majority of the time.

Unfortunately, many of the electric powered components and control systems are not designed for hybrid use even though they may have application. In many cases, they are not compatible and require electronic and/or mechanical changes before they can be incorporated into an appropriately designed prosthesis which best meets an individual's needs. Prosthetists of today must expand their technical expertise and knowledge in the areas of electronics and engineering to meet this challenge. With all the complexities surrounding the design and development to today's upper limb prostheses, this additional technical expertise and knowledge becomes even more essential when as-
sensing and evaluating the particular needs of a
patient.

The clinical assessment and evaluation of indi-
viduals with upper limb deficiencies should
involve a careful study of their psychological,
as well as their psychological needs. All too
often, this is an area of overall prosthetics man-
agement that receives too little attention. In the
author's opinion, it is an essential foundation
for successful prosthetic management and re-
habilitation. The psychological aspects of an
upper limb amputation and its resulting disabili-
ties are too often considered secondarily when
determining what will be the most appropriate
prosthesis for an individual patient. As profes-
sionals, we tend to stress function over aesthetic,
ics, when in fact, a primary concern of the
majority of patients is the appearance of the
prosthesis. These psychological aspects are the
greatest barriers an individual patient must
overcome if successful prosthetic management
and rehabilitation is to be achieved. Their per-
sonal acceptance of their disability and motiva-
tion to return to society is essential for success-
ful rehabilitation. Their reaction to the prote-
thesis plays a major role in this acceptance and
motivation.

The reaction of their immediate family and
friends also plays an important role in their ac-
ceptance of the prosthesis. Many patients have
rejected a prosthesis not because of their own
personal feelings, but because of the reaction of
others. This is most apparent in the manage-
ment of children with congenital upper limb
deficiencies, since in most situations when the
child is under the age of 5, you are managing
the parent's desires and not the child's. If the
parents have difficulty accepting the child's dis-
ability or the prosthesis, they will not encourage
normal development and use of the prosthesis.
Unfortunately, because many professionals are
not responding to the psychological needs of the
parents, many children are going with a pros-
thesis today.

With adequate information gathered in the
initial prosthetic evaluation, further clinical as-
essessment and evaluation procedures should be
carried out to determine the most appropriate
interface design, control source, and compo-
nents to be used in the fabrication of the pro-
thesis. These procedures initially involve the
development of a test interface (check socket)
for determining the best fitting and suspension
techniques to be utilized in the prosthesis. A
variety of interface designs and suspension
techniques exists for both adults and juveniles at
all levels of upper limb deficiencies. All require
the development of an appropriate test inter-
face.

The development of a test interface is also
necessary for use in establishing definitive E.M.G. potential sites when myoelectric con-
trol is being considered. When the E.M.G. po-
tential are not adequate or when the patient re-
quires further E.M.G. training, the test inter-
fase becomes essential for maintaining consist-
tent placement of the electrodes relative to mus-
cle stress. Further, the test interface allows the
practitioner to evaluate a variety of optional
control sources and components by developing
a test prosthesis around it. This allows pre-
prosthetic training and evaluation of the pro-
thesis in a variety of configurations before the
development of a definitive prosthesis. The use
of a test prosthesis is essential in evaluating
"hybrid" and "system" design approaches for
the definitive prosthesis.

Myoelectric control systems vary consider-
dably depending on the desired function and
availability of adequate muscle sites. In some
cases, it is necessary to utilize more than one
type of myoelectric control system to achieve
the desired functions in a prosthesis. Some sys-
tems utilize a single E.M.G. potential from a
single site to control a single function, such as
in the traditional Otto Bock or Veterans Ad-
ministration/Northwestern University (VANU)
myoelectric control systems. This type of con-
tral system would, therefore, require two
E.M.G. potential sites to control two functions,
such as, hand opening and hand closing. It is
suggested that this type of system should com-
monly be referred to as a "2-site/2-function
myoelectric control system." Another system
may utilize a single E.M.G. potential from a
single site to control two functions, such as in
the University of New Brunswick system. This
system utilizes one E.M.G. potential site to
to control two functions. In this type of system a
light or low level contraction produces one
function and a strong or high level contraction
produces another function. It is suggested that
this type of system be referred to as a "1-site/2-
function myoelectric control system." Yet
another system may utilize two E.M.G. poten-
tials from two sites to control multiple func-
tions, such as in the Utah Artificial Arm el-
bow-hand system. This system utilizes two
E.M.G. potential sites to control five functions.
In this system a single E.M.G. potential from
each site (biceps and triceps) controls one func-
tion in each electric powered component (hand
and elbow), while a co-contraction of both muscles together unlocks the elbow, switching from hand control mode to elbow control mode. It is suggested that this myoelectric control technique be referred to as a "2-site/5-function myoelectric control system."

Switch control systems also vary depending upon the desired function and availability of body motions to actuate them. In many cases, in order to provide the desired functions in a switch controlled prosthesis, various types of switch control systems must be incorporated, achieving a hybrid design approach. The most commonly used switch control systems utilize a pull type switch which is actuated by a single body motion to actuate two functions, such as hand opening and hand closing. It is suggested that this switch control technique be referred to as a "1-motion/2-function pull switch control system." Another type of system utilizes a push button type switch, to operate the opposing function. It is suggested that this switch control technique be referred to as a "1-motion/1-function push button switch control system." Yet another type of system utilizes a rocker type switch which is actuated by two body motions to actuate two functions in the prosthesis, which in most cases oppose each other. It is suggested that this control technique be referred to as a "2-motion/2-function rocker switch control system."

When body motion is being used to actuate a bowden cable control system in a hybrid manner along with switch and/or myoelectric control, it should always be remembered to activate the mechanical component with the primary body motion available. The theory behind this approach is that a bowden cable control system requires significant muscle activity and body motion to produce the force and excursion necessary to actuate a mechanical component. Myoelectric and switch control systems require less muscle activity to produce the force and excursion necessary for actuation of an electric component.

The choice of controls utilized in the design and development of an upper limb prosthesis should involve a careful study of an individual's particular needs. Since the terminal device is the most important component of the prosthesis, it is necessary to choose a control technique which will provide the most appropriate actuation of that device. It is felt that myoelectric control provides the most physiological and natural source of control and that whenever possible, it should be given primary consideration.

Furthermore, the majority of individuals with upper limb deficiencies generally prefer a hand as a terminal device. In many cases, this desire may be purely psychological, and as professionals we should respect that need. The majority of individuals with upper limb deficiencies are unilateral with the prosthesis obviously becoming the nondominant side. Therefore, it is important that the prosthesis first meet the individual's psychological needs, and secondarily, that it be easily controlled and provide adequate prehension for stabilizing objects, which is the primary function of the non-dominant side during bilateral hand activities. This would obviously seem to indicate that myoelectric control, which best utilizes the residual neuro-muscular system, and an electric powered hand, which provides forceful prehension, should be the first choices in developing a functional prosthesis.

Electric powered components have been felt by many not to be sufficiently reliable and durable. This, however, has not proven to be the case when they are appropriately incorporated into a prosthesis and the patient is properly oriented to their care and use. There are those individuals and situations who are abusive to an electric powered prosthesis as well as a mechanical prosthesis. However, they are not the majority and require appropriate consideration prior to design and development of a prosthesis. Hybrid design concepts can also be utilized to enhance the reliability and durability of a prosthesis by allowing the encapsulation of components within the prosthesis that would otherwise be external. This is a concept known as self-containment. Hybrid prostheses can significantly improve the functional restoration and rehabilitation of an individual with an upper limb deficiency. They are an important consideration in the prosthetic management of such individuals and can be the difference between total rejection or functional use of a prosthesis. Unfortunately, upper limb prostheses of this type will most likely continue to be provided in specialized centers and not find their place in common practice unless developers and manufacturers work towards making their components more compatible and interchangeable with those of other systems.

AUTHOR
John N. Billock, C.P.O. is with the Orthotic and Prosthetic Centre of Warren, 145 Shaffer Drive, N.E., Warren, Ohio 44484.