ASSESSMENT OF AMPUTEE REHABILITATION USING A TEXT-GENERATING DATA PROCESSING SYSTEM

Peter H. Stern, M.D.

In 1974, The Burke Rehabilitation Center began a major effort to computerize its medical record system in an endeavor to simplify the ever increasing demands for documentation in health care. Previous experience with a terminal-oriented, time-sharing computer system called APL (1) convinced us of the practicality of using computer-generated English-text discharge summaries for major disease categories that can be described in a relatively finite number of variables. In a previous publication (2) the procedures required for stroke rehabilitation discharge summaries were described.

This paper is concerned with discharge summaries for lower-limb amputees that were referred to the Burke Rehabilitation Center during the period between 1/1/74 and 9/20/75 and with the concurrent establishment and analysis of a data base accumulated during this period.

METHOD

The computer system, APL (A Programming Language), consists of a terminal connected by telephone equipment to a remotely located central IBM-370 computer (Fig. 1). It is a time sharing system; that is, many terminals are connected simultaneously. A new general purpose program, APG (A Program Generator), is added for our purposes. The APL/APG system is highly interactive, user oriented, and does not require any special knowledge in computer sciences or mathematics. At the Burke Rehabilitation Center medical, nursing, and clerical personnel are able to operate the terminals with very little instruction.

Preprogramming

The user, in this case the physician in charge of the Amputee Service, constructs a questionnaire type discharge summary work sheet as shown in Appendix A. The encircled numbers are used to generate the English text discharge summary. The programmer is provided with a sample prose; upper and lower bounds for queries such as laboratory values for the inclusion of validity checks, and a general idea of the data that might be subject to calculations, correlations, or tabulations.
Operation

In order to generate a discharge summary the attending physician simply encircles the appropriate answers to the prepared series of queries and if necessary completes the free text provisions which are of fixed character length. The data is then entered by a terminal operator or the physician himself. It is retrieved either as an English text discharge summary (Fig. 2) or as part of a statistical report, the format of which are predetermined in the preprogramming and programming phases (Table 1).

RESULTS

During the period between January 1, 1974 and September 20, 1975, 127 amputee patients were discharged from the Burke Rehabilitation Center. The tabulated results follow.

Age, Sex

Equal sex distribution and an average of 65 years (range 17-90) shows that the elderly “vascular” amputee is the major public health problem in amputee rehabilitation.

Length of Stay (L.O.S.)

The mean L.O.S. of the entire group was 45 days (median 39). If bilateral and asymmetrical amputees are separated out, the mean length of stay dropped to 35.8 days. The L.O.S. of the bilateral below-knee amputees was 56 days and of the asymmetrical amputees 96.4 days.

The median L.O.S. of 39 days on the Amputee Service of a rehabilitation hospital compares favorably with national P.S.R.O. standards. Our data was influenced by a long-term (284 days) stay of a bilateral traumatic amputee. The mode of 28 days signifies a trend towards shorter L.O.S.

Functional Outcome

The achievement scale of Russek (3) was selected to assess outcome. The results appear gratifying since 13 bilateral and 5 asymmetrical amputees are included. The majority (more than 90%) of the patients were discharged with a temporary prosthesis with a plaster-of-Paris socket (Figs. 3 & 4), applied almost immediately following admission. These devices are worn for an average of 6-8 weeks. It can be assumed that most patients will achieve a higher rating once supplied with the permanent device. Only about half of the bilateral below-knee amputees achieved a classification III rating. The rest remained Class IV. Of the asymmetrical amputees only two achieved Classification III.

Employment Status

The results, not encouraging, are attributable to the retirement age of most male patients and the presence of a variety of associated medical conditions which are listed in section II(3).

Level of Amputation

The classification recommended by the task force on standardization of prosthetic-orthotic terminology was used (4). Over two-thirds of the patients had either short or standard length below-knee (B/K) amputations as opposed to above knee (A/K).

This signifies a laudable trend for surgeons to carry out B/K amputations in preference to A/K amputations, which only 15 years ago was the preferred operative site if popliteal pulses were absent. Knee disarticulation, thought to be a suitable alternative to long A/K or a very short B/K amputation, was encountered only once.

Description of Amputation

The slightly higher incidence of right versus left amputation is probably statistically insignificant. There were 11 bilateral B/K amputees, 5 asymmetrical, but only 2 bilateral A/K amputees. The admission of this category of patients is generally discouraged as successful prosthetic application is usually not possible for older persons.

Interval of Amputation to Walking

It takes about two months after amputation before patients can walk again with a prosthesis. The mode of 48 days indicates a trend towards a much shorter interval.

Reason for Amputation

As expected, diabetic arteriosclerosis obliterans (ASO) is the most frequently encountered reason
Fig. 2. A typical English-text discharge summary provided by the APL/APG system.
TABLE I. BURKE REHABILITATION HOSPITAL
AMPUTEE REHABILITATION REPORT (LOWER LIMB)
DISCHARGES DURING THE PERIOD 01/01/74 THROUGH 09/20/75

<table>
<thead>
<tr>
<th>PATIENTS DISCHARGED (all diagnoses)</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>65</td>
</tr>
<tr>
<td>Female</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGE (127 patients):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LENGTH OF STAY (127 patients):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABILITY TO USE LOWER LIMB PROSTHESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I Excellent functional outcome; not handicapped</td>
</tr>
<tr>
<td>Class II Good functional outcome; some restriction</td>
</tr>
<tr>
<td>Class III Fair functional outcome; job modification required</td>
</tr>
<tr>
<td>Class IV Walking with assistance and for short distances only</td>
</tr>
<tr>
<td>Class V No significant improvement of mobility</td>
</tr>
<tr>
<td>Class VI Rejection of prosthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMPLOYMENT STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retired</td>
</tr>
<tr>
<td>Full time, usual work</td>
</tr>
<tr>
<td>Part time, usual work</td>
</tr>
<tr>
<td>Job modification or retraining</td>
</tr>
<tr>
<td>Unable to work</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL OF AMPUTATION</th>
<th>RIGHT</th>
<th>LEFT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvic, complete</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Hip, complete</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Thigh, upper</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Thigh, middle</td>
<td>23</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>Thigh, lower</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Knee disarticulation</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Below knee, upper</td>
<td>13</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>Below knee, middle</td>
<td>33</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>Below knee, lower</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Foot, complete</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Foot, partial</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION OF AMPUTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
</tr>
<tr>
<td>Left</td>
</tr>
<tr>
<td>Bilateral, below the knee</td>
</tr>
<tr>
<td>Bilateral, above the knee</td>
</tr>
<tr>
<td>Assymetrical</td>
</tr>
</tbody>
</table>
TABLE I. (Continued)

INTERVAL—AMPUTATION TO WALKING (114 patients):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Mode</td>
<td>48</td>
</tr>
</tbody>
</table>

REASON FOR AMPUTATION

<table>
<thead>
<tr>
<th>Reason</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAUMATIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gunshot</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VASCULAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic ASO</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>ASO</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>TAO</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Thrombo-embolism</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CONGENITAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TUMOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

PRECEDING SURGICAL PROCEDURES

<table>
<thead>
<tr>
<th>Procedure</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sympathectomy</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Embolecctomy</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>By-pass</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Previous amputation</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

COMPLICATIONS AT ACUTE HOSPITAL

<table>
<thead>
<tr>
<th>Complication</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Blood-loss anemia</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

STUMP CONDITION

<table>
<thead>
<tr>
<th>Condition</th>
<th>RIGHT</th>
<th>LEFT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>14</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td>Bulbous</td>
<td>27</td>
<td>20</td>
<td>47</td>
</tr>
<tr>
<td>Not healed</td>
<td>33</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td>Edematous</td>
<td>42</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>Infected</td>
<td>17</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>Other</td>
<td>13</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

ASSOCIATED CONDITIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Dementia</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Parkinsonism</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
for amputation, followed by other vascular conditions.

Preceding Surgical Procedures

The data show a trend in surgery away from the once popular sympathectomies towards vascular surgical efforts such as by-pass procedures or embolectomies to restore failing circulation. Twenty-seven patients had previous amputations such as partial foot, conversions or amputations on the other side.

Complications at Acute Hospital

Reported complications which occurred at the referring hospital were frequent and ranged from mild (blood loss anemia) to pulmonary or myocardial infarctions. Only 41 patients had no complications. Wound infections occurred in 24 patients.

Stump Conditions

Only 36 patients had optimal stump conditions. Bulbous (47), not healed (54), edematous (70), or infected (24) stumps were noted. These significantly affected L.O.S. data.

Associated Conditions

This tabulation shows that practically all patients have one or more significant associated disorders, including 27 patients who had mild to moderate dementia.

Interval of Amputation to Admission

Mean and median values show that this interval is between 6–8 weeks with a trend towards a shorter interval (mode 21 days). Some of the reasons for delay in transfer to a rehabilitation hospital can be explained by the data presented in Sections 8, 9, 10, and 11.

DISCUSSION

The utilization of the described APG/APL application is not only time-saving and convenient for the physician, but has a direct, beneficial effect on health care delivery.

The patient’s summary is available at the time of discharge and contains vital information concerning his medication schedule and appointment place and time for outpatient re-evaluation.

The interactive questionnaire type program
Fig. 3 A typical temporary prosthesis provided below-knee amputees. A Sach foot, an adjustable "pylon," and a plaster-of-Paris socket are used.

Fig. 4. A typical temporary prosthesis provided above-knee amputees. A Sach foot, an adjustable AK "pylon" with manual knee lock, and a plaster-of-Paris socket are used.

will remind the physician and allied health personnel of possible omissions in record keeping or care.

The periodic exploration of a cumulative data base allows not only the detection of trends but the constant monitoring of the amputee service activities for the purposes of quality control.

SUMMARY

This is a description of an APL/APG system oriented towards use by medical personnel essentially unskilled in computer sciences. An interactive questionnaire type input allows the generation of English-text summaries of patients.
discharged from The Burke Rehabilitation Center. Variables contained in the summary are stored to form a data base for concurrent statistical analysis.

LITERATURE CITED

1. Stern, P.H. and Miller, J.M. Quantitative evaluation of long term L-DOPA treated patients with Parkinsonism using a computer terminal. 6th Congreso Internacional de Medicina Fisica, 2-6 July 1972, Vol. II.

APPENDIX A

THE BURKE REHABILITATION HOSPITAL
AMPUTEES DISCHARGE SUMMARY WORKSHEET

LOWER LIMB(S)

<table>
<thead>
<tr>
<th>TRANSFERRED FROM:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) NYH</td>
<td>(2) NYC Hospital</td>
<td>(3) Local Hospital</td>
<td>(4) Other Hospital</td>
<td>(5) Home</td>
<td>(6) Other:</td>
<td>20 ch.</td>
</tr>
</tbody>
</table>

ADMITTED ON:
7/7/75
DATE OF DISCHARGE:
8/21/75
DAYS AWAY:
0

AGE: 66
SEX: Male
ETHNIC ORIGIN: Black

UPPER LIMB: NOT UPPER LIMB

LOWER LIMB:
(1) Right
(2) Left
(3) Bilateral B/K
(4) Bilateral A/K
(5) Asymmetrical

ETIOLOGY:
(1) Vascular
(2) Traumatic
(3) Congenital
(4) Tumor
(5) Other:

SIDE, RIGHT:

<table>
<thead>
<tr>
<th>LOWER RIGHT LEVEL</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) PELVIC, COMPLETE</td>
<td>(2) HIP, COMPLETE</td>
<td>THIGH</td>
<td>(3) Upper</td>
<td>(4) Middle</td>
<td>(5) Lower</td>
<td></td>
</tr>
<tr>
<td>(6) KNEE DISARTICATION</td>
<td>BELOW KNEE</td>
<td>(7) Upper</td>
<td>(8) Middle</td>
<td>(9) Lower</td>
<td>(10) FOOT, COMPLETE</td>
<td>(11) FOOT, PARTIAL</td>
</tr>
</tbody>
</table>

SIDE, LEFT:

<table>
<thead>
<tr>
<th>LOWER LEFT LEVEL</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) PELVIC, COMPLETE</td>
<td>(2) HIP, COMPLETE</td>
<td>THIGH</td>
<td>(3) Upper</td>
<td>(4) Middle</td>
<td>(5) Lower</td>
<td></td>
</tr>
<tr>
<td>(6) KNEE DISARTICATION</td>
<td>BELOW KNEE</td>
<td>(7) Upper</td>
<td>(8) Middle</td>
<td>(9) Lower</td>
<td>(10) FOOT, COMPLETE</td>
<td>(11) FOOT, PARTIAL</td>
</tr>
</tbody>
</table>

ASSOCIATED CONDITIONS:

| (0) None | (1) Dementia | (2) Parkinsonism | (3) Stroke | (4) Heart disease | (5) Hypertension | (6) Pulmonary disease | (7) Renal disease | (8) GI disease | (9) Diabetes mellitus | (10) GU disease | (11) Fractures | (12) Depression | (13) Eye disease | (14) Peripheral neuropathy | (15) Other: | 30 ch |

HISTORY OF PRESENT ILLNESS:

DATE OF AMPUTATION(S):
(20) LOWER RIGHT
(21) LOWER LEFT: 6/25/75

REASON FOR AMPUTATION(S):

TRAUMATIC:

| (1) Industrial | (2) Traffic | (3) Gunshot | (4) Recreational | (5) Other: | 30 ch |

VASCULAR:

| (1) Diabetic ASO | (2) TAO | (3) Recreational | (4) Thrombo-embolism | (5) Other: | 50 ch |
AMPUTEE DISCHARGE WORKSHEET Continued, Page 2

[26] PREVIOUS SURGICAL PROCEDURE(S): [27] Previous amputation(s):
(0) None (4) MI
(1) Sympathectomy (5) Pneumonia
(2) Endoectomy (6) Other: _______________________________ 30 ch
(3) By-pass
(4) Other: _______________________________ 30 ch

[28] COMPLICATION(S):
(0) None (4) MI
(1) Blood-loss anemia (5) Pneumonia
(2) Pulmonary embolism (6) Other: _______________________________ 30 ch
(3) Infection
(5) Other: _______________________________ 50 ch

PERTINENT PHYSICAL, LAB. AND X-RAY FINDINGS ON ADMISSION:

[34] GENERAL CONDITION: (1) Good, (2) Fair, (3) Poor, (4) Other: _______________________________ 30 ch

[37] STUMP CONDITION, LOWER RIGHT:
(1) Good (4) Edematous
(2) Bulbous (5) Infected
(3) Not healed (6) Other: _______________________________ 30 ch

[38] LOWER LEFT:
(1) Good (4) Edematous
(2) Bulbous (5) Infected
(3) Not healed (6) Other: _______________________________ 30 ch

[39] REMAINING LIMB(S): (1) Normal, (2) Impaired circulation, (3) Contractures, (4) Weakness,
(5) Other: _______________________________ 30 ch

[40] SENSORY FINDINGS: (1) Normal, (2) Impaired vision, (3) Impaired hearing,
(4) Impaired proprioception, (5) Other: _______________________________ 30 ch

[41] HCT: 37 WBC: 6500; FBS: 129; BUN: 28; Creatinine: 1.1

[42] OTHER TESTS:
(0) U
(4) Infarction

[43] X-RAY, CHEST:
(0) Not done (4) Infarction
(1) Normal (5) Emphysema
(2) Acute inflam. (6) Malignancy
(3) Chronic inflam. (7) Other: _______________________________ 30 ch

[44] X-RAY, OTHER:
(0) U
(4) Infarction

[45] ECG:
(0) Not done, (1) Normal, (2) AF, (3) CAD, (4) BBB, (5) PVC's, (6) MI, (7) LVH, (8) RVH,
(9) Other: _______________________________ 50 ch

[46] COURSE IN HOSPITAL; REHABILITATION:
(1) Preprosthetic activities (4) Functional training
(2) Stump shaping (5) Self-care training
(3) Wound healing (6) Other: _______________________________ 30 ch

LOWER LIMB(S), PREPARATORY

[69] RIGHT B/K:
(0) None (6) None
(1) B/K plaster of paris (7) B/K plaster of paris
(2) Other: _______________________________ 30 ch (2) Other: _______________________________ 30 ch

[71] RIGHT A/K:
(0) None (6) None
(1) A/K plaster of paris (7) A/K plaster of paris
(2) Other: _______________________________ 30 ch (2) Other: _______________________________ 30 ch

[72] DATE RIGHT ISSUED: 7/29/75

[73] DATE LEFT ISSUED: 7/29/75
ASSessment of Amputee Rehabilitation

AMPUTEE DISCHARGE WORKSHEET, Continued, Page 3

LOWER LIMB(S), FINAL:

[80] RIGHT COMPONENTS:
- (1) B/K PTB, hard socket
- (2) PTB, soft insert
- (3) PTB, thigh lacer
- (4) Conventional
- (5) PTS
- (6) Symes
- (7) Other: ___________________________ 30 ch

[81] LEFT COMPONENTS:
- (1) B/K PTB, hard socket
- (2) PTB, soft insert
- (3) PTB, thigh lacer
- (4) Conventional
- (5) PTS
- (6) Symes
- (7) Other: ___________________________ 30 ch

[82] A/K SOCKETS, RIGHT:
- (1) Quadrilateral, wood
- (2) Total contact, laminated
- (3) Molded plastic, sockets (Canadian)
- (4) Hemi-pelvectomy, molded socket
- (5) Other: ___________________________ 30 ch

[83] A/K SOCKETS, LEFT:
- (1) Quadrilateral, wood
- (2) Total contact, laminated
- (3) Molded plastic, sockets (Canadian)
- (4) Hemi-pelvectomy, molded socket
- (5) Other: ___________________________ 30 ch

[84] A/K KNEES, RIGHT:
- (1) Knee lock
- (2) Single axis
- (3) Hydraulic
- (4) Variable friction
- (5) Other: ___________________________ 30 ch

[85] A/K KNEES, LEFT:
- (1) Knee lock
- (2) Single axis
- (3) Hydraulic
- (4) Variable friction
- (5) Other: ___________________________ 30 ch

[86] FEET, RIGHT:
- (1) Wood foot w. toe break
- (2) SACH
- (3) Single axis, SACH
- (4) Other: ___________________________ 30 ch

[87] FEET, LEFT:
- (1) Wood foot w. toe break
- (2) SACH
- (3) Single axis, SACH
- (4) Other: ___________________________ 30 ch

[88] SUSPENSION, RIGHT:
- (1) Semi-rigid pelvic belt
- (2) Sisian belt
- (3) Other: ___________________________ 30 ch

[89] SUSPENSION, LEFT:
- (1) Semi-rigid pelvic belt
- (2) Sisian belt
- (3) Other: ___________________________ 30 ch

[90] DATE PATIENT FIRST WALKED: 7/30/75

SURGICAL TREATMENT:

[101] LOWER RIGHT:
- (0) None
- (1) Stump care
- (2) Debridement
- (3) Stump revision date: __________ /

[102] LOWER LEFT:
- (0) None
- (1) Stump care
- (2) Debridement
- (3) Stump revision date: __________ /

[107] MEDICAL TREATMENT:

- (0) None
- (1) Antihypertensives
- (2) Cardiac
- (3) Anticoagulants
- (4) Diuretics
- (5) Antihyperglycemics
- (6) Antibiotics
- (7) Psychotropics
- (8) Analgesics
- (9) Other: ___________________________ 26 ch

[108] COMPLICATIONS:

- (0) None
- (1) Osteomyelitis
- (2) Infection (stump)
- (3) Contractures
- (4) PVD
- (5) Pulm. infect
- (6) Pneumonia
- (7) URI
- (8) GI infection
- (9) BPH
- (10) MI
- (11) CHF
- (12) Arrhythmia
- (13) Hip fx.
- (14) Stroke
- (15) GI disease
- (16) Renal disease
- (17) Other: ___________________________ 50 ch

[17] STUMP INJURY: Wound infected

Wound Resutured: ___________________________
AMPUTEE DISCHARGE WORKSHEET, Continued, Page 4

109 **CONDITION ON DISCHARGE:**
(1) Improved, (2) Unchanged, (3) Worse, (4) Deceased

111 **ABILITY TO USE LOWER LIMB PROSTHES(E)S:**

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Excellent functional outcome; not handicapped by disability.</td>
</tr>
<tr>
<td>II</td>
<td>Good functional outcome; some restriction of activities.</td>
</tr>
<tr>
<td>III</td>
<td>Fair functional outcome; job modification required.</td>
</tr>
<tr>
<td>IV</td>
<td>Walking with assistance and for short distances only.</td>
</tr>
<tr>
<td>V</td>
<td>No significant improvement of mobility.</td>
</tr>
<tr>
<td>VI</td>
<td>Rejection of prosthesis.</td>
</tr>
</tbody>
</table>

112 **DISCHARGE DISPOSITION:**
(1) Home, (2) Nursing Home, (3) Hospital, (4) Home Health, (5) OPD, (6) Other:

20 ch

EMPLOYMENT STATUS:

(7) Retired, (8) Full time, usual work, (9) Part-time, usual work, (10) Job modification or retraining, (11) Unable to work

113 **DISCHARGE ORDERS:**

MEDICATIONS:

| (0) None |

DOSAGE

| (1) HYDRODIURIL 50 mg | QD |
| (2) PHENOBARBITAL 15 mg | TID |
| (3) DIET: 2000 cal DIABETIC |

SCHEDULE

AMOUNT:

[119] **RETURN TO OPD:**
DATE: 9/4/75

[120] **LOCATION:**
(1) Burke, (2) NYH-K7, (3) Other:

25 ch

HOME CARE COORDINATOR:

[121] **NAME:** MARY ELLEN GIBSON, R.N.
[122] **TELEPHONE:** (212) 472-5967

[123] **PHYSICIAN:** PETER H. STERN, M.D.