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Angular displacements in the upper body of AK amputees during
level walking
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Abstract

The angular displacements of the longitudinal
axis of the trunk, and of the latero-lateral axes of
pelvis and shoulder girdle were measured in five
normal subjects and four AK amputees during
level walking at different speeds. Amputees used
single axis prostheses with the SACH foot.
Spatial measurements were carried out in three
dimensions by means of a photogrammetric
technique. The time functions of the target
angles underwent harmonic analysis. Based on
the Fourier coefficients, comparison was made
between normal subjects’ and amputees’ angular
displacements. Relevant findings permitted the
identification of compensatory mechanisms
adopted by amputees at trunk level as well as the
assessment of the reiationship between these
latter mechanisms and those put into action at
lower limb level.

Introduction

The movement of the upper body constitutes
an effective reference for the assessment of the
quality of gait (Saunders et al. 1953; Murray et
al. 1964; Lamoreux, 1971; Cappozzo et al.
1978a).

In this paper rotational displacements of the
upper body during level walking of AK
unilateral amputees and normal subjects are
analyzed. The rotations taken into account were
the frontal and horizontal rotations of the
transverse axis of the shoulders and of the pelvis,
and the frontal and sagittal rotations of the
longitudinal axis of the trunk. This choice
corresponds to a well established tradition in the
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field of biomechanics and refers to easily
understandable kinematic quantities. The pelvic
rotations have been classified as gait
determinants by Saunders et al. (1953). The
shoulder and trunk rotations are correlated with
the maintenance of balance and with the
mechanical energy efficiency of the locomotor
act (Cappozzo et al. 1978a). The analysis of these
rotations can provide useful data for both
amputee’s gait evaluation and improvement of
prosthesis design, provided that it is carried out
quantitatively and an easily readable synthetic
description of the relevant time functions is
devised.

Since walking is a cyclic movement. the
related kinematic variables can be represented
through a Fourier series. Each Fourier
component is a sinusoid with a period equal to
the stride period or to an integer submultiple of
it; it is fully described by only two parameters:
the amplitude and the phase. The harmonics
associated with human locomotion are very few
(Bernstein, 1966; Winter et al. 1975; Cappozzo
et al. 1979a;), therefore the most relevant
information relative to the investigated
kinematic quantities is contained in a few
numbers only.

Materials and methods

Five normal male subjects and four male
amputees were tested during level walking at
various speeds. A total of 29 tests were carried
out. The subject anthropometric data and the
main characteristics of the tests they were
subjected to are shown in Table 1. During the
walk trials all subjects wore their usual shoes.
The experimental set-up has been completely

*Now at Istituto di Automatica. Universitd di Ancona.
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Subject Age Height Weight Amp.side Amp.level  Test Speed  Stride period

(yr) (m) (kg) (km/h) (s)
I 22 1.72 70 1 4-49 1-15
2 495 1-10
3 594 1-03
@ 4 594 1-01
2 2 23 1-73 70 1 4.55 120
) 2 4-96 1-13
k& 3 5-23 1-10
g 3 21 1-76 66 1 3-57 1-24
£ 2 5-56 1-05
z 4 32 1-81 72 1 4-30 1-31
2 478 1-20
3 5-80 1-05
5 22 1-86 66 1 5-05 1-10
2 6-01 1-02
6 18 1-67 56 L I 1 2-80 1-43
2 3-00 1-37
3 3-60 1-14
7 18 1-68 56 R 11 1 320 1-29
2 3-50 1-27
P 3 3:50 1-30
3 4 3-90 1:31
3 5 4-60 1-20
g- 6 4-70 1-10
< 7 5-00 1-09
8 5-20 1-03
8 31 1-68 91 L 11 1 2:34 1-42
2 2-40 1-45
3 2:50 1-34
9 37 1-74 74 L 11 1 3-60 1-25
1
ST

N
8(t)=M, +Z M;sin (iQ2t + &;)

i=1




Trunk roratinns (R arpues goi

AL AL o

&
=
=
=3
2
=
S
13
=
2
=
@
a

normal



134

INTRINSIC HARMONICS

EXTRINSIC HARMONICS

A Cappazze. F. Figura, F Guzzamd, T Les and M. Murchew

PELVIC HORIZONTAL ROTATION

15t harmonic

PELVIC ROTATIONS
FRONTAL PLANE HORIZONTAL PLANE
st 15t
Olo, <30
g §
oA L
3rd 3rd
A Cﬁ
A/ &/
ond 2nd




INTRINSIC HARMONICS

EXTRINSIC HARMONICS

15t

2nd

Trurmk: roteions in arpries gai

SHOULDER ROTATIONS

FRONTAL PLANE

1t

HORIZONTAL PLANE

A

2nd

INTRINSIC HARMONICS

EXTRINSIC HARMONICS

15t

FRONTAL PL

D

TRUNK ROTATIONS
ANE SAGITTAL PLANE

znd

2nd

&

—3




136 A. Cappozzo, F. Figura, F. Gazzani, T. Leo and M. Marchetti

1) Amputees

In both planes the extrinsic harmonics are
larger than in normal subjects; (a) the first
harmonic of the frontal rotation had amplitudes
that ranged from 4° to 6-8° and occupied a sector
with phase values between —30° and +20°;
(b) the second harmonic of the same rotation
depended upon the side of amputation and its
amplitude varied between 1° and 2°.

Concerning rotation in the sagittal plane, the
extrinsic (first) harmonic became dominant; its
amplitude went from 1-2° to 5° and the phase
depended upon the side of amputation. The
intrinsic (second) harmonic covered a larger
sector than that of the normal subjects; this
sector was centred on — 130° of phase values. The
amputee’s second harmonic had an amplitude
ranging from 0-5° to 2-4°.

Discussion

Since the normal tests considered in this work
did not show significant variations with the
progression speed, it seemed appropriate to
collect all of them in one control sample for the
comparison with amputee’s data.

Amputee gait, compared with normal gait, is
characterized by remarkably larger amplitudes
of the harmonics in all rotations we investigated.
Furthermore, extrinsic harmonics appear. This
means that the amputee’s upper body rotations
are larger and asymmetrical.

Concerning the first harmonic of the pelvic
frontal rotation in normal subjects, it
corresponds to the fall of the pelvis on the side of
the swinging leg, referred to by Saunders et al.
(1953) as a gait determinant. In the amputee tests
this harmonic is in counterphase with respect to
normal, which means that there is an elevation of
the pelvis, as opposed to a fall, or: the side of the
swinging leg. Such amputee behaviour can be
correlated with the passive prosthetic ankle and
the reduced efficiency of the stump abductor
muscles on the amputated side. During
prosthetic swing the artificial foot cannot be
dorsiflexed; thus the corresponding hip must be
elevated in order to gain clearance for the
swinging leg. During prosthetic stance the sound
hip is elevated and the trunk bends laterally
toward the prosthesis in order to make
equilibrium easier and to decrease the effort of
the stump abductors (McLeish and Charnley,
1970).

The overall trend of the pelvic horizontal
rotation may be described by the first harmonic
alone. According to the relevant description
given by Saunders et al. (1953) or by Steindler
(1955), its phase values should fall between +90°
and +180°. Actually the normal subjects’ tests in
this study showed the above feature only
exceptionally and exhibited a very large inter-
individual phase scatter (Fig. 4). This suggests
that the pelvic horizontal rotation is an
individual trait.

As far as the amputee is concerned the first
harmonic of the pelvic horizontal rotation
belongs to a sector centred on a phase value near
zero. This means that the amputee’s larger
forward rotation of the pelvis occurs during mid-
stance. This behaviour can be correlated with the
structural and functional losses of the amputee.
The forward movement of the normal hip during
prosthetic stance is opposed by knee stability
problems, reduction of the stump muscles
efficacy and prosthetic ankle passivity. Because
of the absence of an active push-off by the
prosthesis, the pelvic rotation is reduced during
normal leg stance.

With regard to the third harmonic of the pelvic
horizontal rotation, the phenomena associated
with it are not easily detectable. A third
harmonic component may be engendered by
two perturbations, equal and opposite,
superimposed on a curve with period T, if the
interval between the perturbations is T/2. The
amplitude and phase of the third harmonic
depend on the amplitude, duration and location
within T of the perturbations. By inspections of
the horizontal pelvic rotation plots vs time such
perturbations can be only indistinctly seen,
because of the small amplitude of the third
harmonic itself and the large phase scatter of the
first harmonic. If X be the mean direction of
progression of the subject with respect to the
laboratory frame, in a reference system moving
with the subject itself at a medium speed of
progression, then the plot of the difference
between the X coordinates ( AX(t)) of the hip,
purged from the contribution of the first and
second harmonics, shows the perturbations very
distinctly*. In Figure 7(a) a typical plot for a

*It can be easily proved that due to the characteristics
of the hip movements, the pelvis geometry and the
formal definition of the pelvic horizontal rotation, the
perturbations of the angle are markedly reduced with
respect to the corresponding AX(t) perturbations.
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relationships with specific deficiencies of present
day prostheses, the above analysis suggests a
need for some active mechanisms in the
prosthetic knee and ankle. These mechanisms
should be devoted to ensuring a hip movement as
similar as possible to the normal one, assuming
that it defines an optimum condition (Cappozzo
et al. 1979b). Possible suggestions for the design
of such mechanisms are; (a) a knee-ankle
mechanism able to dorsiflex the foot during
knee flexion (Cappozzo et al. 1980), thus
reducing hip elevation during prosthesis swing;
(b) a knee equipped with some kind of energy
recovery mechanism able to perform suitable
knee flexion-extension during the early stance
phase in order to reduce knee stability problems
(Cappozzo et al, 1979b; Seliktar, 1971). Such
mechanisms should allow an improvement of
horizontal pelvic rotation.
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The contribution of back muscles in low back
pain

Weak back muscles as a contributory cause of
chronic low back pain syndrome have been
discussed by many investigators Schede (1966),
Nachemson and Lindh (1969). Nachemson
pointed out that the strength of the spinal
muscles is of doubtful importance for the
prevention of back pain, whereas he concluded
that the muscle strength of the abdomen can
protect the spine. It remains to be clarified
whether a weakness is primary or secondary to
back pain. It is believed in this Department that
well trained muscles, especially abdominal wall
muscles, can prevent back pain.

Walters and Morris (1972) studied the
electrical activity of the trunk muscles and found
no decrease of activity of back muscles and
abdominal wall muscles in patients wearing
lumbar supports during walking, whereas in
standing they found a decrease in EMG activity.

Prescription indications

The purpose of supporting the lumbar spine is
to permit ambulation while allowing local rest of
the low back. In cases of persistent low back pain
due to instability of posterior facet as a result of
arthritis four different supports or braces are
prescribed (Table 1).

Even when supports are used for acute
episodes they sometimes have to be applied for a
prolonged time. In these cases physical therapy
is given to strengthen the trunk muscles and
provide muscular stability. Good results have
been obtained by training patients in Back
Schools (Forsell, 1981).

The use of supports in cases of acute ruptured
discs mostly increases the radicular pain because
of increased venous blood flow through the
intraspinal canal venous plexus. This can add
additional compression to the irritated nerve
root. Elastic lumber supports do not immobilize
the spine. Extreme flexion and extreme
extension is restricted, whereas lateral bending
and rotation is unaffected.

Conclusions

A back support can restrict, but not prevent
motion in the lower lumbar region. It seems
highly unlikely that any device applied to the
body can effectively splint the lumbosacral
region.

A support produces primarily abdominal

compression which transforms the abdominal
cavity into a semi-rigid cylinder capable of
transmitting stresses through the abdomen
rather than through the spine (Morris et al. 1961;
Morris, 1974).

Knowing this, the prescription of a low back
suport or brace can be helpful in the treatment of
low back pain. Many patients obtain
symptomatic relief of pain from their use. For
sure the relief of pain has also some physiological
reasons.

There are many lumbar supports with the
same basic construction but called by different
names, they differ in the kind of materials used in
their fabrication and in the pads.
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Measurement of maximal end-weight-bearing
in lower limb amputees

B. M. PERSSON and E. LIEDBERG

Department of Orthopaedic Surgery, Lund University Hospital, Sweden.

Abstract

Modern sockets for lower limb amputees utilize
total contact and distribute some weight on the
stump end. Its tolerance to bear weight varies
but is better after joint disarticulation, however,
systematic measures have been missing.
Different levels, indications, shapes etc. were
analysed with 102 measurements in 69 patients.
The maximal-end-weight-bearing of the stump
measured on a scale was much lower after
transmedullar  amputations  than  after
disarticulations. Men had a mean tolerance more
than 15 kg but women less than 10 kg. There was
a positive correlation to body weight. Diabetics
tolerated significantly more end-bearing and
patients with phantom pain more than patients
with stump pain. Within each category of stumps
the range of maximal end-weight-bearing was
large. Among all below-knee amputees the
tolerance was between 2 to 55 kg ot 3 to 79 per
cent of body weight. Pointed stumps statistically
tolerated about as much as rounded ones and the
variability of contact surface was not measured
as its sensitivity to pain must be unevenly
distributed. It is concluded that this simplified
method is helpful to analyse pain and to modify
end-weight-bearing more individually.

Introduction

It is well known that knee disarticulation and
Syme’s amputation create stumps of high
functional value. This is ascribed to the long
lever arm for the movement of the prosthesis, to
the reliable suspension due to the club shape of
the stump and to the high end-weight-bearing
capacity due to the rounded bone end and its
large surface (Hornby and Harris, 1975). To
create an increased surface of the bone end at a

All correspondence to be addressed to Dr. B. M.
Persson, Department of Orthopaedic Surgery, Lund
University Hospital, S-221 85, Lund, Sweden.
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transmedullary amputation Swanson (1973) has
tried a Silastic plug implanted into the marrow
cavity to cover the end of bone. Dederich (1963)
and others have suggested osteoplasty to bridge
between fibula and tibia at below-knee
amputation to enlarge and stabilize the end of
bone. Foort (1981) has asked for attempts using
the femoral condyles or similar bone trimmed
and put back at the amputation level to create
such an increased breadth of the surface to
improve end-weight-bearing.

Older types of artificial limbs were either
created for end bearing or for proximal bearing
(hanging stumps) but most modern types of
sockets distribute weight-bearing over the total
stump, however, in spite of that some parts are
given extra load. It is therefore not well-known
to what extent stumps tolerate end-weight-
bearing. Renstrém (1981) in a series of below-
knee amputees, examined maximal end loading
capacity using an ordinary weighing scale.
Hornby and Harris (1975) examined a series of
Syme’s amputations also using a scale but
combining the recorded total maximal end-
weight-bearing with readings from a transducer
pad, put into the bottom of the socket and
relating to body weight what they called maximal
end-weight-bearing capacity.

This paper represents a study of maximal end-
weight-bearing capacity of the residual limbs,
after lower limb amputation at different levels,
with the intention of finding out how such values
differ and how if possible this can be used in
future for the design of the total contact socket
or in analysis of pain.

Material and method

During 1981 102 measurements were taken of
69 patients, nine of whom were bilateral.
Repeated measurements were made in 24 cases
following an interval of between 1 and 9 months.
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correspond to the low ratings found in this study
of maximal end-weight-bearing (MEW)
patients with stump pain. They measured around
one circumference 2-5 cm below the medial tibial
plateau or perineum in 44 below— and 56 above-
knee amputees respectively and compared the
findings to the unamputated side. The readings
were taken by using a piston rod spring, with the
tip one quarter inch square. Deep cutaneous
pressure tolerance per square centimeter could
thus be recorded ranging from 0 to 20 kg/cm?,
and was between 5 and 20 in the best
rehabilitated cases. Deep pressure sensitivity
had a mean of 4:3 kg/cm? in above-knee patients
and 5-7 kg/cm? in below-knee patients (p 0-05).
For the entire sample the below-knee stumps
were less sensitive but deep sensitivity was the
same in below— and above-knee stumps among
diabetics. No reports are given concerning
difference of sensitivity between diabetics and
non-diabetics as found in the present study. The
difference found between above— and below-
knee levels in this study was not significant and is
contradicted by the finding that below-knee
stumps had a higher tolerance of load per square
inch around a distal circumference in the above
mentioned study (Weiss et al. 1971).

Older stumps become more pointed by
atrophy at the same time as they may become
toughened by training. Differences in MEW-
values between rounded and pointed below-
knee amputees could not be demonstrated.
Extremely pointed stumps of course must
tolerate less total end loading due to the small
surface. Theoretically maximal end-weight-
bearing should be analysed with account taken of
the area of contact but this would make a more
elaborate method necessary as it can not be
assumed that the tolerance is evenly distributed
at all. The most sensitive part limits the load
irrespective of the total contact surface. The lack
of correlation between shape of end and MEW-
value illustrates this and simple measurement of

the maximal end-weight-bearing disregarding
the contact area is thus preferred.

The difference found between patients with
stump pain and phantom pain seems highly
interesting as an objective method to
differentiate pain problems and to refine the
socket distribution of pressure during casting for
the prosthetic socket. The total contact socket
should distribute weight-bearing differently in
different individuals allowing the patient to put
at least his body-weight on the artificial limb with
a minimum of pain and adverse skin reactions.
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with the eyes open he had recovered to the same
level as before, but with his eyes closed he had
improved but not to the level of his first test.
Clinically this patient showed after this
intermediate attack some difficulties in
concentration but his walking ability had hardly
changed.

These transient strokes are not always
remarked upon but do hold the patient’s
progress back. This is also one'of the drawbacks
when stroke patients are compared with each
other, either as a control group or for assessment
of one patient over any length of time.

Conclusions

In general, patients treated with FES show
either marked improvement or barely assessable
improvement. Since patients in this trial were all
“old”, well established hemiplegic patients, who
were considered to have reached the optimum
point in their rehabilitation programme, the
improvement may be considered to be due to the
influence of FES, and it may be concluded that
for some patients FES offers the chance of
considerable improvement. It is not clear,
however, how such patients may be identified.

The underknee peroneal brace is an
improvement over the earlier developed devices;
nevertheless it still needs further improvement in
durability. A hemiplegic patient is inevitably a
clumsy patient and cannot always be as careful as
he would like to be. Nevertheless, patients were
very quick to learn how to apply and use this
device. Generally patients’ aptitude in fitting the

brace was satisfactory, as judged by an
assessment by the researcher the first day after
primary fitting.

During this trial it was remarked upon that the
postural sway measurements may reflect the
progress of the patient more accurately than the
instrumented gait analysis which may exhibit the
great variability in performance from step to
step.
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